A [NiFe]hydrogenase model that catalyses the release of hydrogen from formic acid.

نویسندگان

  • Nga T Nguyen
  • Yuki Mori
  • Takahiro Matsumoto
  • Takeshi Yatabe
  • Ryota Kabe
  • Hidetaka Nakai
  • Ki-Seok Yoon
  • Seiji Ogo
چکیده

We report the decomposition of formic acid to hydrogen and carbon dioxide, catalysed by a NiRu complex originally developed as a [NiFe]hydrogenase model. This is the first example of H2 evolution, catalysed by a [NiFe]hydrogenase model, which does not require additional energy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrogenase Gene Distribution and H2 Consumption Ability within the Thiomicrospira Lineage

Thiomicrospira were originally characterized as sulfur-oxidizing chemolithoautotrophs. Attempts to grow them on hydrogen failed for many years. Only recently we demonstrated hydrogen consumption among two of three tested Thiomicrospira and posited that hydrogen consumption may be more widespread among Thiomicrospira than previously assumed. Here, we investigate and compare the hydrogen consumpt...

متن کامل

Dual organism design cycle reveals small subunit substitutions that improve [NiFe] hydrogenase hydrogen evolution

BACKGROUND Photosynthetic microorganisms that directly channel solar energy to the production of molecular hydrogen are a potential future biofuel system. Building such a system requires installation of a hydrogenase in the photosynthetic organism that is both tolerant to oxygen and capable of hydrogen production. Toward this end, we have identified the [NiFe] hydrogenase from the marine bacter...

متن کامل

Cloning and sequencing of a [NiFe]

A hydrogenase operon was cloned from chromosomal DNA isolated from Desdfovibrb vulgaris Miyazaki F with the use of probes derived from the genes encoding [NiFe] hydrogenase from Desulfovibrio vulgaris Hildenborough. The nucleic acid sequence of the cloned DNA indicates this hydrogenase to be a two-subunit enzyme: the gene for the small subunit (267 residues; molecular mass = 28763 Da) precedes ...

متن کامل

How oxygen reacts with oxygen-tolerant respiratory [NiFe]-hydrogenases.

An oxygen-tolerant respiratory [NiFe]-hydrogenase is proven to be a four-electron hydrogen/oxygen oxidoreductase, catalyzing the reaction 2 H2 + O2 = 2 H2O, equivalent to hydrogen combustion, over a sustained period without inactivating. At least 86% of the H2O produced by Escherichia coli hydrogenase-1 exposed to a mixture of 90% H2 and 10% O2 is accounted for by a direct four-electron pathway...

متن کامل

Heterologous Expression and Maturation of an NADP-Dependent [NiFe]-Hydrogenase: A Key Enzyme in Biofuel Production

Hydrogen gas is a major biofuel and is metabolized by a wide range of microorganisms. Microbial hydrogen production is catalyzed by hydrogenase, an extremely complex, air-sensitive enzyme that utilizes a binuclear nickel-iron [NiFe] catalytic site. Production and engineering of recombinant [NiFe]-hydrogenases in a genetically-tractable organism, as with metalloprotein complexes in general, has ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chemical communications

دوره 50 87  شماره 

صفحات  -

تاریخ انتشار 2014